Monday, 10 February 2014

Dark flow

Dark flow

Dark flow is an astrophysical term describing a possible non-random component of the peculiar velocity of galaxy clusters. The actual measured velocity is the sum of the velocity predicted by Hubble's Law plus a possible small and unexplained (or dark) velocity flowing in a common direction. As of late 2013, it is disputed whether data from the Planck spacecraft shows statistically-significant evidence of "dark flow".
According to standard cosmological models, the motion of galaxy clusters with respect to the cosmic microwave background should be randomly distributed in all directions. However, analyzing the three-year Wilkinson Microwave Anisotropy Probe (WMAP) data using the kinematic Sunyaev-Zel'dovich effect, astronomers Alexander Kashlinsky, F. Atrio-Barandela, D. Kocevski and H. Ebeling found evidence of a "surprisingly coherent" 600–1000 km/s flow of clusters toward a 20-degree patch of sky between the constellations of Centaurus and Vela.
The researchers had suggested that the motion may be a remnant of the influence of no-longer-visible regions of the universe prior to inflation. Telescopes cannot see events earlier than about 380,000 years after the Big Bang, when the universe became transparent (the Cosmic Microwave Background); this corresponds to the particle horizon at a distance of about 46 billion (4.6×1010) light years. Since the matter causing the net motion in this proposal is outside this range, it would in a certain sense be outside our visible universe; however, it would still be in our past light cone.
The results appeared in the October 20, 2008, issue of Astrophysical Journal Letters.[non-primary source needed] Since then, the authors have extended their analysis to additional clusters and the recently released WMAP five-year data.



Post a Comment

Toggle Footer